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Not in this century, the 21', nor in the last, the 20th, but in the 19th

century, Karl Pearson published the equation for the product moment

correlation that now bears his name (Pearson, 1896; Stigler, 1986). Old as

this correlational metric is, I want to suggest that it remains as perhaps the

most nearly universally applicable index of effect size. It is difficult to

imagine a situation in which a Pearson r or its equivalent, could not

appropriately be used to index the magnitude of an effect. And because all

Pearson rs, and their equivalents, are based on focused comparisons, or

contrasts, rather than on diffuse or omnibus comparisons (e.g., F tests with

more than one df in the numerator, or x2 tests with df > 1) , there is far

greater conceptual clarity in the employment of r than in the employment of

effect size estimates based on df > 1.

By the use of simple displays, Pearson rs can be made readily

understandable to policy experts who are unfamiliar with more complex
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statistical ideas such as standard deviation units. The interpretation of

Pearson rs that do not differ significantly from the null value (usually zero)

can be clarified by the use of simple devices like the counternull value of the

obtained r.

In the domain of reliability of measurement, we run considerable risks

when we try to get by with such non-correlational indices as percent

agreement or with indices based on more than a single df.

In some areas of behavioral and biomedical research, effect size

indices such as odds ratios and relative risks are commonly employed. It is

often the case that these indices operate in ways that can be quite

misleading. In such situations we can use Pearson rs to standardize these

indices and make them more consistently useful and interpretable.

When three or more conditions are being compared in experimental or

observational research, different subtypes of Pearson rs have been found

useful. Two of these subtypes of r, relerting_ct, , and rcontrast-CV, have recently been

applied to the problem of construct validation permitting a useful

quantification of this most complex of the types of validity of our measures.

Finally, I will describe briefly a new statistic that allows us to obtain an

accurate estimate of an effect size called re quivalent from a knowledge only of

an accurate one-tailed p and sample size N.

In the remainder of this paper I illustrate the claims I have made for

Karl Pearson's 1896 invention (or discovery) and some applications and

devices that make it even more widely applicable and useful. But before
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beginning that, I want to note that Pearson himself found a new and exciting

application of his r. He used it in what must surely have been one of the

earliest of meta-analyses.

Insert Table 1 about here

Pearson was interested in the effects of vaccination for smallpox on

survival, and he collected the results of six experiments examining this

relationship. Table 1 shows these six rs rounded to two decimal places.

Pearson summarized these six correlations as an r of .6

Table 1 shows a few more details about his results than Pearson

reported, including the mean, median, standard deviation, 95% confidence

interval, one sample t, p, and rcontrast all based on a random effects approach,

i.e., treating studies (rather than patients) as sampling units (Rosenthal &

DiMatteo, 2002).

Interpretive Data for Pearson's r

Table 2 shows four statistical procedures designed to aid in the

interpretation of the correlations and their summarizers shown in Table 1.

The Binomial Effect Size Display and the counternull value of an effect size

can be applied to any individual correlation as well as to the mean or median

r of a meta-analysis. The coefficient of robustness and the file drawer

analysis are designed more specifically to apply to the meta-analytic context.
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Insert Table 2 about here

The Binomial Effect Size Display

Table 2A shows the mean Pearson r of Table 1 (r =.64) as a Binomial Effect

Size Display (BESD). This display is a way of showing the practical importance of

any effect indexed by a correlation coefficient.The correlation is shown to be a

simple difference in outcome rates between the experimental and the control

groups in this standard table which always adds up to column totals of 100 and

row totals of 100 (Rosenthal & Rubin, 1982). We obtain the BESD from any

obtained effect size r by computing the treatment condition success rate as .50

plus r/2 and the control condition success rate as .50 minus r/2. Thus an r of .64

yields a treatment success rate of .50 + .64/2 = .82 and a control success rate of

.50 -.64/2 = .18. Had we been given the BESD to examine before knowing r we

could easily have calculated it mentally for ourselves; r is simply the difference

between the success rates of the experimental versus the control group

(.82 -.18 = .64).

Pearson's mean r of .64 is enormous when compared to the results of most

biomedical interventions. For smaller effect sizes there has been a problem in

evaluating various effect size estimators from the point of view of practical

usefulness (Cooper, 1981). Rosenthal and Rubin (1979; 1982) found that neither

experienced behavioral researchers nor experienced statisticians had a good



CCCC Div. 5 - page 5

intuitive feel for the practical meaning of common effect size estimators and that

this was particularly true for such squared indices as r2, omega2, epsilon2, and

similar estimates.

The Physicians' Aspirin Study. At a special meeting held on December

19,1987, it was decided to end, prematurely, a randomized double blind

experiment on the effects of aspirin on reducing heart attacks (Steering Committee

of the Physicians Health Study Research Group, 1988). The reason for this unusual

termination of such an experiment was that it had become so clear that aspirin

prevented heart attacks (and deaths from heart attacks) that it would be unethical

to continue to give half the physician research subjects a placebo. And what was

the magnitude of the experimental effect that was so dramatic as to call for the

termination of this research? Was r2 .80 or .60, so that the corresponding rs would

have been .89 or .77? Was r2 .40 or .20, so that the corresponding rs would have

been .63 or .45? No, none of these. Actually r2 was .00 or, to four decimal places,

.0011, with a corresponding r of .034. The decision to end the aspirin experiment

was an ethical necessity it saved lives. Most social and behavioral scientists are

surprised that life-saving interventions can be associated with effect sizes as small

as rs of .034 and r2s of .0011.

This type of result seen in the Physicians' Aspirin Study is not at all unusual

in biomedical research. Some years earlier, on October 29, 1981, the National

Heart, Lung, and Blood Institute discontinued its placebo-controlled study of

propranolol because results were so favorable to the treatment that it would be
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unethical to continue withholding the life-saving drug from the control patients

(Kolata, 1981). Once again the effect size r was .04, and the leading digits of the

r2 were .00! As behavioral researchers we are not used to thinking of rs of .04 as

reflecting effect sizes of practical importance. But when we think of an r of .04 as

reflecting a 4% decrease in heart attacks, the interpretation given r in a Binomial

Effect. Size Display, the r does not appear to be quite so small.

The Counternull Value of an Effect Size

Table 2B shows the counternull value of Pearson's mean r. The counternull

was recently introduced as a new statistic (Rosenthal & Rubin, 1994). It is useful in

virtually eliminating two common errors: (a) equating failure to reject the null with

the estimation of the effect size as equal to zero and (b) equating rejection of a null

hypothesis on the basis of a significance test with having demonstrated a

scientifically important effect. In most applications, the value of the counternull is

simply twice the magnitude of the obtained effect size (e.g., Cohen's d, Hedges's

g, Glass's A, Zr). Thus with r= .10 found to be nonsignificant, the counternull

value of r= .20 is exactly as likely as the null value of r= .00. For any effect size

with a symmetric reference distribution such as the normal or any t distribution, the

counternull value of an effect size can always be found by doubling the obtained

effect size and subtracting the effect size expected under the null hypothesis

(usually zero). Thus, if we found that a test of significance did not reach the chosen

level (e.g., .05), the use of the counternull would keep us from concluding that the

mean effect size was, therefore, probably zero. The counternull value of 2d or 2Z,

7
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would be just as tenable a conclusion as concluding d =0 or 4=0. In our example

of Pearson's meta-analysis, the counternull value of Zr was 1.52 and, therefore, in

units of r the counternull value was .91, an extremely large value.

The counternull is a kind of confidence interval conceptually related to the

more traditional (e.g., 95%) confidence interval. As Cohen, with his customary

wisdom, pointed out, the behavioral and medical sciences would be more advanced

had we always routinely reported not just p values but effect size estimates with

confidence intervals as well (Cohen, 1990; 1994).

The Coefficient of Robustness

The standard error of the mean effect size in a meta-analysis, along with

confidence intervals placed around the mean effect size are of great value

(Rosenthal & Rubin, 1978). It will often be useful also to employ a statistic that

does not change simply as a function of the increasing number of replications.

Thus, if we want to compare two research areas for their robustness, adjusting for

the difference in number of replications in each research area, we may prefer the

"robustness coefficient". For example, Table 2C shows the coefficient of

robustness for the smallpox study to be 8.89, a value we can compare to another

of Pearson's meta-analyses, that of the survival value of inoculation against

typhoid. That coefficient of robustness was a more modest, but still impressive,

1.58.

The coefficient of robustness is simply the mean effect size divided by the S

of the effect sizes. This metric is the reciprocal of the coefficient of variation

(Rosenthal, 1990; 1993). The coefficient of robustness (CR) can also be viewed in

8
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terms of the one-sample t test on the mean of the set of k effect sizes, when each

is given equal weight. Thus, CR is given by /1/1-c, or t adjusted for number of

studies.

The utility of this coefficient is based on two ideas. First, robustness (or

replication success, or clarity) depends on the homogeneity of the obtained effect

sizes. Second, robustness depends also on the unambiguousness or clarity of the

directionality of the result. Thus, a set of replications grows in robustness when

the variability (S) of the effect sizes (the denominator of the coefficient) decreases

and also when the mean effect size (the numerator of the coefficient) increases.

Incidentally, the mean may be weighted, unweighted, or "trimmed" (Tukey, 1977).

Indeed, it need not be the mean at all, but any measure of location or central

tendency (e.g., the unweighted or weighted median).

The coefficient of robustness can be seen as a kind of second order effect

size. An illustration will be helpful. Imagine that three meta-analyses of three

treatments have been conducted with mean effect size ds of .8, .6, and .4,

respectively. If the variability (S) of the three meta-analyses were quite similar to

one another, the analysis showing the .8 mean d would, of course, be declared the

most robust. However, suppose the Ss for the three analyses were 1.00, 0.60,

and 0.20, respectively. Then the three coefficients of robustness would be

.8/1.00 = .8, .6/.60 = 1.0, and .4/.20 = 2.0. Assuming reasonable and

comparable sample sizes and numbers of studies collected for the three analyses,

9
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the treatment with the smallest effect size (i.e., .4) would be declared most robust

with the implication that its effect is the most consistently positive.

The File Drawer Analysis

The file drawer problem refers to the well-supported suspicion that the

studies retrievable in a meta-analysis are not likely to be a random sample of all

studies actually conducted (Rosenthal, 1979; 1991a). The suspicion has been that

studies actually published are more likely to have achieved statistical significance

than the studies remaining squirreled away in the file drawers (Sterling, 1959). No

definitive solution to this problem is available, but we can establish reasonable

boundaries on the problem and we can estimate the degree of damage to any

research conclusion that could be done by the file drawer problem. The

fundamental idea in coping with the file drawer problem is simply to calculate the

number of studies averaging null results that must be in the file drawers before the

overall probability of a Type I error can be brought to any precisely specified level

of significance, say p = .05. This number of filed studies, or the tolerance for

future null results, is then evaluated for whether such a tolerance level is small

enough to threaten the overall conclusion drawn by the reviewer. If the overall

level of significance of the research review will be brought down to the level of

barely significant by the addition of just a few more null results, the finding is not

resistant to the file drawer threat.

Details of the (fixed effect) calculations and rationale are given elsewhere

(Rosenthal, 1991a), but briefly, for a random effects analysis based on k studies,

10
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we can find the number (X) of new, filed, or unretrieved studies averaging null

results (i.e., r = .00) required to bring the new overall p to .05 from the following:

X =1 (a)2 k
(2.7065?

(1)

where Er is the sum of the rs of all the k studies we have retrieved, and S2 is the

variance of the rs of the k retrieved studies. Table 2D shows that over 1,000

unretrieved studies averaging null results would be required to bring the overall level

of significance to .05 or greater. By way of comparison, in Pearson's typhoid meta-

analysis, only 27 such studies would be required.

It should be noted that the file drawer analysis addresses only the effects on

publication bias of the results of significance testing. Very sophisticated graphic

(Light & Pillemer, 1984), and other valuable procedures are available for the

estimation and correction of publication bias (e.g., Begg, 1994; Hedges & Olkin,

1985; Hunter & Schmidt, 1990).

Risks in Not Using Pearson's r-Based Indices of Reliability

Percent Agreement

It has long been common practice for some researchers to index the reliability

of judges' categorizations using percent agreement defined as

(A +AD) 100
(2)

where A represents the number of agreements and D represents the number of

11
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Insert Table 3 about here

disagreements (Rosenthal & Rosnow, 1991).

Table 3 shows how percent agreement can be a very misleading indicator of

interjudge reliability. In Part A of Table 3 we find that two researchers, Smith and

Jones, each had two judges evaluate a series of 100 film clips of children for the

presence or absence of frowning behavior. Both Smith and Jones found their judges

to show 98% agreement , but Smith's 98% agreement was a hollow victory

indeed. The correlation between Judges A and B was actually slightly negative,

r = .01, (4) = 0.01). Jones's 98% agreement, on the other hand, was associated

with an r of +.96, (4) = 92.16).

Part B of Table 3 shows two additional cases of percent agreement obtained

by researchers North and West. This time, the two investigators have both obtained

an apparently chance level of agreement, i.e., 50%. Both results, however, are very

far from reflecting chance agreement, both with p= .0009. Most surprising,

perhaps, is that North obtained a substantial negative reliability ( r= -.33) while

West obtained a substantial positive reliability (r = + .33); another illustration that

percent agreement is not a very informative index of reliability.

Multi-df Interjudge Reliability

Among the first psychologists to appreciate the problems of percent

agreement as an index of reliability was Jacob Cohen (1960). He developed an

12
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index, kappa, that solved the problem of the percent agreement index by adjusting

for any agreement based simply on lack of variability, e.g., the lack of variability

found in Table 3A where both of Smith's judges found 99% of the film clips to

show frowning behavior.

Insert Table 4 about here

Table 4 gives an example of the type of situation in which kappa is often

employed. Two clinical diagnosticians have examined 100 people and assigned

them to one of four classifications, e.g., schizophrenic, neurotic, normal, and brain

damaged. Only three quantities are required to compute kappa:

0 = observed number on which the two judges have agreed, i.e., the number on

the diagonal of agreement; in this example: 13 + 12 + 12 + 13 = 50.

E = expected number under the hypothesis of only chance agreement for the cells

on the diagonal of agreement. For each cell, the expected number is the product of

the row total and the column total divided by the total number of cases. In this

example the expected number is:

(25 x 25)/100 + (25 x 25) /100 + (25 x 25)/100 + (25 x 25)/100 =

6.25 + 6.25 + 6.25 + 6.25 = 25.

N = total number of cases classified; in this example, N=100.

kappa is computed from

13
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in the present example.
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(3)

Although kappa is clearly an improvement over percent agreement as an

index of reliability, it does raise some serious questions. When kappa is based on

tables larger than a 2 x 2, e.g., a 3 x 3, a 4 x 4 (as in Table 4), or larger, as it often

is, kappa suffers from the same problem as does any statistic on df> 1. That

problem, the problem of diffuse or omnibus procedures, is that for most values of

kappa we cannot tell which focused or specific judgments are made reliably and

which are made unreliably. Only when kappa approaches unity is the actual

interpretation of a value of kappa straightforward, i.e., essentially all judgments are

made reliably (Rosenthal, 1991b). We illustrate the difficulty in interpreting kappa

by returning to Table 4.

The 4 x 4 table we see, based on 9 df, can be decomposed into a series of

six pairwise 2 x 2 tables each based on a single df, and addressing a very specific,

conceptually clear question of the reliability of dichotomous judgments; A vs. B, A

vs. C, A vs. D, B vs. C, B vs. D, and C vs. D. Table 5 shows the results of

computing kappa separately for each of these six 2 x 2 tables.

Insert Table 5 about here

Of the six focused or specific reliabilities computed, four are kappas of 1.00,

and two are kappas near zero (.04 and -.04). The mean of the six 1 df kappas is

14
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.667, and the median is 1.00; neither value being predictable from the omnibus 9

df kappa value of .33. To show even more clearly how little relation there is

between the omnibus values of kappa and the associated 1 df kappas, i.e., the

focused reliability kappas, Tables 6 and 7 have been prepared. Table 6 shows an

omnibus 9 df kappa value of .33, exactly the same value as that shown in Table 4.

Insert Tables 6 and 7 about here

Table 7 shows the six focused reliabilities of df = 1 associated with the omnibus

value of kappa (.33) of Table 6. We see that of these six focused kappas, four are

kappas of .00, one is a kappa of + 1.00, and one is a kappa of -1.00. The mean

and median focused kappa both show a value of .00. We can summarize the two

omnibus kappas of Tables 4 and 6 and their associated focused kappas as follows:

Example 1 Example 2

Omnibus kappa .33 .33

Mean focused kappa .67 .00

Median focused kappa 1.00 .00

Thus we have two identical kappas; one made up primarily of perfect reliabilities,

the other made up primarily of zero reliabilities.

Although the greatest limitations on kappa occur when kappa is based on

df> 1, there are some problems with kappa even when it is based on a 2 x 2 table

of counts where df = 1. The basic problem under these conditions is that very often
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kappa is not equivalent to the product moment correlation computed from exactly

the same 2 x 2 table of counts. This is certainly not a criticism of kappa since it

never pretended to be a product moment correlation. The limitation, however, is

that we cannot apply various interpretive procedures or displays to kappa that we

can apply to product moment correlations. Examples include the use of the

coefficient of determination (i.e., r2) and the Binomial Effect Size Display.

Here we need only indicate the conditions under which a 1 df kappa is or is

not equivalent to a product moment correlation (referred to as a Pearson r in the

general case and sometimes referred to as phi or 4 in the case of a 2 x 2 table

of counts). Kappa and r are equivalent when the row totals for levels A and B are

identical to the column totals for levels A and B, respectively. Consider the

following example:

Judge 1

A B E

A 70 10 80

Judge 2 B 10 10 20

E 80 20 100

For these data, where the marginal totals for level A are identical for Judges 1 and

2 (i.e., 80),

kappa(df = 1) = 0 E 80 68
= .375,N E 100 68

16
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and r (or equivalently, phi) yields the identical value of .375. Therefore, we could

meaningfully compute a coefficient of determination or a Binomial Effect Size

Display for this particular kappa because it is equivalent to a Pearson r or phi (0).

Now consider the following example in which we have the same four cell

entries and the same marginal totals as in the preceding example. The only thing

that has changed is the location of the cell with the largest count (70) so that the

marginal totals for level A differ for Judges 1 and 2(20 versus 80).

A

Judge 2 B

A

Judge 1

10

10

70

10

80

20

E 20 80 100

In this example,

kappa(df =1) =
0 E 20-32

= -.176,
N E 100-32

but r (or 4) yields a markedly different value of -.375. We can, therefore, compute a

meaningful coefficient of determination and Binomial Effect Size Display for r, but

we cannot do so for kappa.

Using Pearson's r to Improve Other Effect Size Estimates:

2 x 2 Tables of Counts in the Biomedical Context

The effect size index, r, can, of course be readily applied to any 2 x 2 table

of counts. Three other indices of effect size have also been frequently employed,

especially in biomedical contexts. These are: (a) relative risk, (b) odds ratio, and (c)

17
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risk difference. All three are illustrated for several hypothetical outcomes in Table 8.

Each study compared a control condition to a treatment condition with two possible

outcomes: not surviving or surviving.

Insert Table 8 about here

Relative Risk

Relative risk is defined as the ratio of the proportion of the control patients at

risk (not surviving) divided by the proportion of the treated patients at risk. With the

cells of the 2 x 2 table of counts labeled A, B, C, and D from upper left to lower

right (as shown in Table 8) relative risk (RR) is defined as:

RR
(A C

A+B/ C+D

A limitation of this effect size estimate can be seen in Table 8. We examine

the three study outcomes closely and ask ourselves the following: If we had to be

in the control condition would it matter to us whether we were in Study I, Study II,

or Study III? We think most people would rather have been in Study I than II and

we think that virtually no one would have preferred to be a member of the control

group in Study III. Yet, despite the very important phenomenological differences

among these three studies, Table 8 shows that all three relative risks are identical:

10.00. That feature may be a serious limitation to the value and informativeness of

the relative risk index.

18
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Odds Ratio

The odds ratio is defined as the ratio of the not surviving control patients to

the surviving control patients divided by the ratio of the not surviving treated

patients to the surviving treated patients. For cells as labeled in Table 8, the odds

ratio (OR) is defined as:

(B
/D)OR =

The odds ratio behaves more as expected in Table 8 than does the relative

risk in that the odds ratio increases with our phenomenological discomfort as we go

from the results of Study I to Study II to Study III. But the high odds ratio for Study

I seems alarmist. Indeed, if the data showed:

Control

Treated

Die Live

10 999,990

1 999,999

11

106

106

1,999,989 2(106)

so that an even smaller proportion of patients were at risk, the odds ratio would

remain at 10.00, an even more alarmist result.

The odds ratio for Study III is also unattractive. Since all the controls die,

perhaps we could forgive the infinite odds ratio. However, very different

phenomenological results yield an identical odds ratio. If the data showed:

19



Control

Treated

Die Live

1,000,000 0

999,999 1

1,999,999 1
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106

106

2(106)

we would again have an infinite odds ratio, definitely an alarmist result. In this

case even the problematic relative risk index would yield a phenomenologically

more realistic result of 1.00.

Risk Difference

The risk difference is defined as the difference between the proportion of the

control patients at risk and the proportion of the treated patients at risk. For cells as

labeled in Table 8, the risk difference (RD) is defined as:

RD
(A C

A+B C +D

The last column of Table 8 shows the Pearson product moment correlation

(r) between the independent variable of treatment (scored 0,1) and the dependent

variable of outcome (scored 0, 1). Comparison of the risk differences with r in

Table 8 (and elsewhere) shows that the risk difference index is never unreasonably

far from the value of r. For that reason the risk difference index may be the one

least likely to be quite misleading under special circumstances and so we prefer it

as our all-purpose index if we had to use one of the three indices under discussion.

But even here we feel we can do better.

20
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Standardizing the Three Risk Measures

We propose a simple adjustment that standardizes our measures of relative

risk, odds ratio, and risk difference (Rosenthal, 2000; Rosenthal, Rosnow, & Rubin,

2000; Rosenthal & Rubin, 1998). We simply compute the correlation r between

the treatment and outcome and display r in a Binomial Effect Size Display (BESD) as

described earlier.

Insert Table 9 about here

Table 9 shows the BESD for the three studies of Table 8. Although the

tables of counts of Table 8 varied from Ns of 2,000, to 40, to 20, the

corresponding BESDs of Table 9 all show the standard margins of 100 which is a

design feature of the BESD. The computation of our new effect size indices is

straightforward. We simply compute relative risks, odds ratios, and risk differences

on our standardized tables (BESDs) to obtain standardized relative risks,

standardized odds ratios, and standardized risk differences. The computation of

these three indices is simplified because the A and D cells of a BESD always have

the same value (as do the B and C cells). Thus the computational equations simplify

to A/C for standardized relative risk (SRR), to (A /C)2 for standardized odds ratio

(SOR), and to (A-C)/100 for standardized risk difference (SRD).

Table 9 shows the standardized relative risks increasing as they should in

going from Study I to Study Ill. The standardized odds ratios also increase as they
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go from Study I to Study III but without the alarmist value for Study I and the

infinite value for Study III. (A standardized odds ratio could go to infinity only if r

were exactly 1.00, an unlikely event in behavioral or biomedical research.) The

standardized risk difference is shown in Table 9 to be identical to r which is an

attractive feature emphasizing the interpretability of r as displayed in a BESD.

One Pearson's r; Four Useful Subtypes

So far in our joyful praise of r as a highly valued effect size estimate, we

have not mentioned the fact that there are actually four rs that can be usefully

employed as effect size estimates. That is the case both in meta-analytic work and

in the analysis of the data of a single study. The effect size r most often employed

is only one of those rs, specifically, rcontrast. Ideally, both in meta-analytic work

and in the analysis of the data of individual studies, we would report all four

correlations, because each of them addresses a different question (Rosenthal,

Rosnow & Rubin, 2000).

rcontrast

This r is a partial correlation between individual sampling units' scores on the

dependent variable and the predicted mean score (contrast weight) of the group to

which they belong with other between group variation partialed out. This is the

most frequently used correlation in meta-analytic work because it is often the only

correlation we can calculate from other people's data. We can find

tests of significance by any of the following equations:
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(4)

(5)

(6)

(7)

and we can compute rcontrast from the effect size estimate d from the following:

d2rcontrast d2+4
(8)

For further details on other equivalences among effect size estimates see

Rosenthal, 1991a, 1994; and Rosenthal and Rosnow, 1991.

In the simplest case, where two groups are being compared, rcontrast is the

point biserial correlation between membership in one of the two groups (coded,

e.g., 0 and 1) and the score on the dependent variable. In this simple two-group

case we report only the value of rcontrast and not the values of the other three

correlations.

When there are three or more groups being studied, however, each of the

four correlations tells us something different about the relationship between the

independent and dependent variable. For example, raierting, the correlation between
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the predicted and obtained mean scores per condition, often alerts us to an

otherwise overlooked relationship. For example, we may read a report saying there

is "no relationship" between age level (e.g., ages 8, 9, 10, 11, 12) and cognitive

performance with F(4, 20) =1.50, p = .24. However, looking at the five means of

this report may show a perfect correlation (ralerting) between age level and mean

performance, clearly contradicting the conclusion of the report that there was no

relationship between age and performance. That claim had been based on an

inappropriate omnibus F test with 4 df in the numerator. A properly computed

Fcontrast would have yielded F(1, 20) = 6.00, p= .024, rcontrast= .48, (ralerting

=1.00, t very large, p very small). Other uses of r alerting include its role in the

computation of contrasts in other people's data (Rosenthal & Rosnow, 1985;

Rosnow & Rosenthal, 1996; Rosnow & Rosenthal, in press; Rosnow, Rosenthal, &

Rubin, 2000).

reffect size

This is the correlation between individual sampling units' scores

on the dependent variable and the predicted mean score (contrast weight) of the

group to which they belong without any partialing. reffect size, because it involves

no partialing of other between group effects out of the error term, is never larger

than rcontrast and is usually smaller than rcontrast; sometimes dramatically so.

reffect size can be computed from

)refe11
F

(
ct size =

Fcontrast F noncontrastdfn oncontrasi+ dfwithin
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ralerting

This is the correlation between the condition means and the

predicted mean scores (contrast weights). ralerting can be computed from

Fcontrast
ralerting
ralerting Fcontrast + Fnoncontrast(dfzoncontrast)

rBESD

(10)

This is a usually more conservative effect size correlation that permits

generalization not only to other sampling units in the same conditions but also to

other levels of the same independent variable. rBESD can be computed from

lirBESD =
Fcontrast

Fcontrast Fnoncontrast (dfnoncontrast dfwithin)

In Equation 11, just above, when Fnoncontrast is less than 1.00 it is entered in

Equation 11 as equal to 1.00. Fnoncontrast is computed as

Fbetween(dfbetween) Fcontrast

dfbetween 1
(12)

The restriction that Fnoncontrast in Equation 11 cannot drop below 1.00 formalizes

the assumption that the noncontrast variation is noise and forces rgEsD to be less

than, or at most equal to, reflect size Detailed discussions of these four

correlations are provided in Rosenthal, Rosnow, and Rubin, (2000).
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Using Pearson's r to Quantify Construct Validity

Construct validity is one of the most important concepts in all of

psychology. Yet despite the importance of this concept, no simple metric can be

employed to quantify the extent to which a measure can be described as construct

valid. Researchers typically establish construct validity by presenting correlations

between a measure of a construct and a number of other measures that should,

theoretically, be associated with it (convergent validity) or vary independently of it

(discriminant validity).

The aim of construct validation is to embed a purported measure of a

construct in a nomological network, that is, to establish its relation to other

variables with which it should, theoretically, be associated positively, negatively, or

practically not at all (Cronbach and Meehl, 1955). A procedure designed to help

quantify construct validity should provide a summary index not only of whether the

measure correlates positively, negatively, or not at all with a series of other

measures, but the relative magnitude of those correlations. Or put another way, it

should be an index of the extent to which the researcher has accurately predicted

the pattern of findings in the convergent-discriminant validity array. Such a metric

should also provide a test of the statistical significance of the match between

observed and expected correlations, and provide confidence intervals for that

match, taking into account the likelihood that some of the validating variables may

not be independent of one another.

In a recent paper, Drew Westen and I present two effect size estimates (both

Pearson rs) for quantifying construct validity (Westen & Rosenthal, 2002). These
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two rs, variants on two of the four rs described in the previous section, were

designed to summarize the pattern of findings represented in a convergent-

discriminant validity matrix for a given measure. These metrics provide simple

estimates of validity that can be compared across studies, constructs, and

measures. Both metrics provide a quantified index of the degree of convergence

between the observed pattern of correlations and the theoretically predicted pattern

of correlations that is, of the degree of agreement of the data with the theory

underlying the construct and the measure.

Contrasts and Construct Validity

In their classic paper on construct validation, Cronbach and Meehl (1955)

considered the possibility of developing an overall coefficient for indexing construct

validity but noted the difficulty of providing anything more than a broad indication

of the upper and lower bounds of validity. However, developments since that time,

particularly in the concept of the multi-trait multi-method matrix (MTMM) (Campbell

and Fiske, 1959; Shrout and Fiske, 1995), have led to continued efforts to derive

more quantitative, less impressionistic ways to index the extent to which a

measure is doing its job. Thus, a number of researchers have developed techniques

to try to separate out true variance on a measure of a trait from method variance,

often based on the principle that method effects and trait effects (and their

interactions) should be distinguishable using analysis of variance, confirmatory

factor analysis (because trait and method variance should load on different factors),

structural equation modeling, and related statistical procedures (Cudeck, 1988;
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Hammond, Hamm, & Grassia, 1986; Kenny, 1995; Reichardt and Coleman, 1995;

Wothke, 1995).

Our procedures are in many respects related, but are simple, readily applied,

and designed to address the most common case in which a researcher wants to

validate a single measure by correlating it with multiple other measures.

The approach we proposed, based on contrast analysis, asks a highly

specific, focused question with one degree of freedom. The question it addresses

is whether the researcher has accurately predicted the magnitude of correlations

between a single predictor variable and multiple criterion variables. Rosenthal,

Rosnow, & Rubin (2000) have outlined the advantages of focused questions of this

sort, but the major advantage is that these procedures, based on one degree of

freedom, provide a single answer to a single question; in this case, does this

measure predict an array of correlations with other measures in a way predicted by

theory?

The procedures Drew Westen and I proposed derive primarily from recent

developments in contrast analysis (Meng, Rosenthal, & Rubin, 1992; Rosenthal,

Rosnow, & Rubin, 2000), a set of techniques usually employed in the analysis of

variance to test specific hypotheses about the relative magnitude of a series of

means. Although researchers have most commonly applied this method to analysis

of variance in experimental designs, contrast analysis is equally applicable to

correlational data. Just as researchers can construct contrasts to test the relative

ordering of means, they can equally construct contrasts to assess the relative

ordering of correlation coefficients, even when those correlation coefficients are
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correlated with one another (Meng, Rosenthal, & Rubin, 1992; Rosenthal, Rosnow,

& Rubin, 2000).

Two Pearson rs for Construct Validity: ralerting-CV and rcontrast-CV

Two Pearson rs provide convenient and informative indices of construct

validity, each in its own way. The first of these correlations, ralerting-CV, is the

simple correlation between (a) the pattern of correlations predicted between the

measure being validated and the k variables correlated with that measure, and (b)

the pattern of correlations actually obtained. It is called an "alerting" correlation

because it is a rough, readily interpretable index that can alert the researcher to

possible trends of interest (Rosenthal et al., 2000).

For example, suppose we were developing a new measure of interpersonal

skill. We have administered our new measure to a sample of participants to whom

we have also administered four other measures. Our construct of interpersonal skill

is such that we predict it will correlate with the four other measures as follows: (1)

Verbal IQ, r predicted roughly as .5, (2) Nonverbal decoding skill, r predicted

roughly as .5, (3) Agreeableness, r predicted roughly also as .5, and (4)

Conscientiousness, r predicted as .1. To compute ralerting-CV we simply correlate

these predicted values (arranged as a column of data) with the obtained values

(arranged as a second column of data). More accurate results are obtained when

the correlations (rs) are first transformed into their Fisher Zr equivalents in order to

improve normality (Meng, et al., 1992; Steiger, 1980).

Thus, suppose the obtained values, Zr transformed, were .74, .59, .60, and

-.03. The correlation between this column of data and our predicted values
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(.5, .5, .5, .1) yields an ralerting-CV of .98. The magnitude of this correlation

suggests that our predicted pattern of values provided a very accurate portrayal of

the pattern or profile of correlations actually obtained.

The effect size correlation ralerting-CV becomes increasingly useful as we

include more and more variables in our convergent-discriminant validity matrix. If

only two variables are to be correlated with our new measure, ralerting-CV can take

on values of only + 1.00 or -1.00. As more variables are added, ralerting_CV

becomes more informative. To put it another way, ralerting_cv provides an unstable

index when the number of criterion variables is small but becomes progressively

more useful as the researcher makes bolder hypotheses about the relation between

the target measure and a range of criterion variablesthat is, as the nomological

net gets wider. We typically do not compute p levels for ralerting-CV, but it can be

used to help in the computation of significance levels for our other effect size

correlation rcontrast-Cl

Our second correlation, rcontrast-CV, shares with ralerting-CV the characteristic

that it will be larger as the match between expected and obtained correlations is

higher. In addition, however, rcontrast-CV uses information about, (a) the median

intercorrelation among the variables to be correlated with the measure being

validated, and (b) the absolute values of the correlations between the measure

being validated and the variables with which it is being correlated. A desirable

feature of rcontrast-CV is that its interpretation is not limited in the same way as is

ralerting-CV when there are only a few variables in the convergent-discriminant
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validity matrix. Computational details for rcontrast-CV are provided in Appendix A of

Westen and Rosenthal, (2002), and in a less directly applicable form, in Meng, et

al, (1992).

Insert Table 10 about here

Table 10 shows the intercorrelations among our five variables, including the

new measure we are in the process of validating, and the four variables for which

we have predicted the correlations with the new measure that would contribute to

its construct validation. We have already reported ralerting-CV as .98; we now report

rcontrast-CV to be .60. The equations given in Westen and Rosenthal (2002) and in

Meng, et al. (1992) also yield a x2 (on k-1 df ) testing the heterogeneity of the set

of correlations of the validating variables with the common dependent variable (i.e.,

the new measure). For the data of Table 10, this X2 (3) = 5.71. Interestingly, the Z

test of significance of r contrast-CV can be obtained by multiplying ralerting_CV by the

square root of the x2 test for heterogeneity; in this example,

Z = ralertingCV
rx2 (k 1) = (.98) J.71 = 2.34, p = .0096.

We can get rcontrast-CV from Equation (7) yielding

2.34
r contrastCV = = .604
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or from Equation (5) employing t instead of Z. We get t from the p associated with

Z (.0096 in this case) and therefore find t113) to be 2.67. Then from Equation (5) we

find

(2.67)2
rcontrastCV = 595

(2.67`

a value slightly lower than the .604 obtained from Equation (7). With large samples

Equations (5) and (7) tend to give the same values; with smaller sample sizes

Equation (5) employing t, tends to more accurate.

Getting Pearson's r from p: re quivalent

Recent years have shown increasing dissatisfaction with the use of

dichotomous decision-making based on significance tests and an increased

recognition of the value of reporting effect sizes. Indeed, the report of the Task

Force on Statistical Inference of the Board of Scientific Affairs of the American

Psychological Association has explicitly recommended that the primary results of

any research should be presented as effect sizes, preferably with an accompanying

confidence interval (Wilkinson & the Task Force on Statistical Inference, 1999).

The purpose of a recent paper by Don Rubin and myself is to describe a

simple procedure for obtaining an accurate estimate of an effect size from a

p-value and the sample size (Rosenthal & Rubin, 2002). This procedure is especially

appropriate when:
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1. In meta-analytic work, or in other re-analyses of others' studies, neither

effect sizes nor significance tests are provided, but only p-values and sample sizes

are reported,

2. No effect size estimate has been generally accepted for the data analytic

procedures employed, or

3. An effect size estimate can be computed directly from the data but,

because of small sample sizes or severe nonnormality, the estimates may be

seriously misleading.

Meta-Analytic Research in Which Only p-Values Have Been Reported

In conducting meta-analyses we often find that only p-values have been

provided rather than effect size estimates or significance test statistics such as t or

Z, or one df F or x2. When those p-values are reported accurately, e.g., p = .11,

p = .02, p = . 003, we can get accurate effect size estimates from them and the

sample size. When ps are reported only as < .05, < .01, etc., we cannot get

accurate effect size estimates but we can set lower bounds, i.e., the lowest

possible value of the effect size, but not upper bounds, the highest possible value

of the effect size. The fact that in meta-analytic applications we can sometimes

obtain only lower bound values must be kept in mind, but such lower bound,

conservative estimates of effect size are better than having no estimate at all.
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No Generally Accepted Effect Size Estimate Exists

Many effect size estimates have been described and have been widely used

(e.g., Cohen, 1988, Fleiss, 1994; Rosenthal, 1991; 1994). However, there remain

numerous statistical procedures for which no standard effect size estimate is

recognized, for example, for many distribution-free or nonparametric procedures.

What effect size estimate should we use, for example, when we have computed

p-values from Fisher's exact test, or from a sign test, a one sample runs test, a

Wilcoxon signed ranks test, a Mann-Whitney U test, or other permutation tests

(Siegel & Castellan, 19881?

Directly Computed Effect Size Estimates are Likely to be Seriously Misleading

Consider a very small randomized experiment in which three animals are

vaccinated and all survive, and three animals are not vaccinated and do not survive.

The sample correlation between vaccination and survival for these six animals is

+1.00. Because of the small sample size and the nonnormality of survival, the

obtained sample correlation is probably a very misleading estimate of the population

correlation. We can do better by computing an accurate p for these six animals and

then using p to compute a more appropriate effect size estimate requivalent-

Computing requivalent

Our procedure yields requivalent from an accurate one-tailed p and sample

size N by obtaining the value of t (with df = N-2) associated with the one-tailed

p-value. One-tailed ps in the "wrong" or unpredicted direction are recorded as

requivalent with a negative sign. We find these values of t quite readily from
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extended tables of t, from hand held calculators, or from computers. Once we have

the t associated with the one-tailed p and N, we compute requivalent from:

11
t2

2requivalent
-1-(N -2)

(14)

a well-known general relationship (shown earlier as Equation 5; Cohen, 1965;

Rosenthal & Rosnow, 1991). When the p-value we used to obtain the value of t

was based on a contrast employing more than two conditions, we replace the

expression (N -2) in Equation (14) by the expression (N k) where k is the number

of conditions. Even more generally, N-2 is replaced by the degrees of freedom on

which the p-value is based.

The interpretation of requivalent is that it is the sample point-biserial

correlation we would have found in data yielding our obtained p-value in a two

group, equal n study with N/2 in each group. Although technically we assume that

the data exactly met the usual assumptions required for the t test (iid normal, with

the same variance in each group), requivalent can be a very useful approximate

effect size estimator even when these assumptions are not met precisely.

That is, suppose we conducted a randomized experiment with N/2 assigned

to the treatment condition and N/2 assigned to the control condition. Also suppose

that the data are independently normally distributed in each condition with the

same variance. Then, when the value of the t-test statistic is t with the obtained

p-value, the value of the point biserial correlation between treatment condition and

outcome is requivalent.
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Confidence Intervals for requivalent

More research is needed to set appropriate confidence intervals for requivalent

Until that research becomes available, however, we believe the usual procedure for

forming confidence intervals will work well for requivalent Thus, a 95% confidence

interval around the Fisher Z transformed requivalent can be found from Equation

(15).

95% C/ = ±1.96/1A . (15)

A Simple Example

Earlier we described a randomized experiment in which three vaccinated

animals survived and three unvaccinated animals did not survive, yielding a sample

correlation of 1.00 between being vaccinated and survival. We can obtain an

accurate p-value for these data from Fisher's exact test:

3!3!3!3!
P = = .05, one-tailed.

6!3!0!0!3!

Hence p = .05 and N = 6, so tot) = 2.13, and from Equation (14) we find:

requivalent
t 2

(2 .1 3)2
= .73 ,

t2 +(N-2) -1(2.13)2 +(6 -2)
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a more realistic estimate of the population value of the correlation between

vaccination and survival than the estimate of 1.00 based on the correlation in the

sample.

We now use Equation (15) to compute a 95% confidence interval around the

obtained requivalent For requivalent = .73, we find Zr = .93 so, with N = 6, the

95% CI around zr runs from .93-1.96/N5 to .93+ 1.96/,5 or from -.20 to +2.06.

Transforming our 95% CI for Z, back to a 95% CI for requivalent yields the interval

from -.20 to .97.

Had we tried to compute a 95% confidence interval around the

obtained value of rsampie (i.e., 1.00, with a Zr value of + 00 ) we would have found

it to show no uncertainty at all, a result that is entirely unreasonable, since the

population correlation is not known to be 1.00 based on those six data points.

requivalent vs. rsample

In what sense is requiva/ent a more accurate estimate of the population

correlation than is the sample correlation, rsempie ? A formal answer to this question

is based on the fact that reempie, although approximately unbiased for the

population correlation, in small samples is a poor estimate. For example, suppose

that in the population 80% of vaccinated animals survive while only 20% of

unvaccinated animals survive. That difference in survival rates is associated with a

correlation between vaccination and survival of .60. If we repeated our experiment

on 3 vaccinated and 3 unvaccinated animals over and over, we would often find

rsample of 1.00 even though we know the population correlation is only .60. If the
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population survival rate for vaccinated animals were 90% while only 10% of

unvaccinated animals survived, we would be even more likely to see rsemple values

of 1.00, but our population value of r would still be far from 1.00; it would be .80.

Even if 95% of vaccinated animals survived, while only 5% of unvaccinated

animals survived, we would still have a population correlation of only .90 while

obtaining rsempie values of 1.00 most of the time.

Insert Table 11 about here

Table 11 illustrates further that requivalent based on exact p-values behaves in

an intuitively more realistic way than rsempie in small samples. Table 11 shows the

results of 8 hypothetical small to modest-sized studies of the effects of treatment

on primate survival with Ns ranging from 2 to 40. For each study, we report the

p-value based on Fisher's exact test along with the associated requivalent and the

sample correlation, reempie As sample size, N, increases, the p-value decreases,

and requivalent increases; however, /sample never changes it remains at 1.00.

Generality and Limitations of requivalent

The index requivalent can be used in a wide variety of contexts beyond the

simple contrasts computed among two or more treatment conditions. As long as a

contrast is involved, comparisons among conditions leading to t tests or Z tests (or

to F tests with 1 df in the numerator, or x2 tests on 1 df), can all be used to

compute requivalent-
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Although requivalent is widely calculable, we emphasize that requivalent is not a

uniformly optimal procedure. It is not intended to be a kind of final common

pathway effect size indicator. It is instead, designed specifically for those situations

in which (a) the alternative is to have no effect size estimate at all (e.g., only

sample sizes and p-values are known for a study), or (b) nonparametric procedures

were employed for which there are no currently accepted effect size indicators, or

(c) sample sizes are so small or data so nonnormal that the directly computed effect

sizes would be more misleading than the computed value of requivalent

To conclude with a medical analogy: we think of requivalent as a first aid kit to

be used for the time being until we can get to a highly sophisticated medical center.

The medical center would be better, but it may be a long way away.

To come now to a close: It's been a long discussion of correlations,

contrasts, and conceptual clarity. But I hope that some of what's been presented

here persuades you to join me in appreciation of what Pearson has done for us and

is still doing for us. Three cheers for Pearson's r!
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Table 1

Karl Pearson's (1904) Meta-Analysis: Correlations Between Smallpox Vaccination

and Survival

Study Pearson r

1 .60

2 .66

3 .77

4 .58

5 .58

6 .63

Mean .64

Median .61

S .072

Standard Error (51.j) .029

95% Confidence Interval From .56

To .72

One sample t(5) 21.68

p .000002

r .99

Note: Calculations were carried out on untransformed rs since Fisher's

Zr transformation had not yet been invented (and because of the homogeneity of

the obtained rs).
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Interpretive Data for Results of Table 1

A. Binomial Effect Size Display of Mean r

Live Die

Vaccinated 82 18 100

Untreated 18 82 100

E 100 100 200

B. Counternull Value of Mean r

.91

C. Coefficient of Robustness

MIS = 8.89a

D. File Drawer Tolerance

for Future Null Results

1,045b

a 5.52 when based on Zr rather than r.

b 401 when based on Zr rather than r.
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Table 3

Examples of Percent Agreement

A. Two Cases of 98 Percent Agreement

Smith's Results Jones's Results

Judge B

Judge A

Frown No frown Judge D

Frown

No frown

Judge C

Frown No frown

98 1 Frown

1 0 No frown

49 1

1 49

Agreement = 98%, but Agreement = 98%, but

rAB = .01; X2(1) = 0.01

B. Two Cases of 50 Percent Agreement

= +.96; x2(1) = 92.16

North's Results West's Results

Judge F

Judge E

Frown No frown Judge H

Frown

No frown

Judge G

Frown No frown

50 25 Frown

25 0 No frown

25 50

0 25

Agreement = 50%, but Agreement = 50%, but

rEF = .33; ,r6) = 11.11

49

rcH = +.33; %6) =11.11



Division 5: CCCC page 49

Table 4

Results of Two Diagnosticians' Classification of 100 Persons

into One of Four Categories

A

Schizophrenic

Judge 1

Neurotic Normal Brain-

damaged

A Schizophrenic 13 0 0 12 25

Judge 2 B Neurotic 0 12 13 0 25

C Normal 0 13 12 0 25

D Brain-damaged 12 0 0 13 25

E 25 25 25 25 100

kappa(df = 9) =
0 E 50-25

= .333N E 100-25
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Table 5

Breakdown of the 9 df Omnibus Table of Counts of Table 4 into Six Specific

(Focused) Re liabilities of df=1 Each.

A B A C

Schizophrenic Neurotic E Schizophrenic Normal E

A Schizophrenic 13 0 13 A Schizophrenic 13 0 13

B Neurotic 0 12 12 C Normal 0 12 12

13 12 25 E 13. 12 25

kappa = 1.00 kappa= 1.00

A D B C

Schizophrenic Brain-damaged E Neurotic Normal E

A Schizophrenic 13 12 25 B Neurotic 12 13 25

D Brain-damaged 12 13 25 C Normal 13 12 25

E 25 25 50 E 25 25 50

kappa = .04 kappa = -.04

B Neurotic

D Brain-damaged

B D C D

Neurotic Brain-damaged Normal Brain-damaged

12 0 12 C Normal 12 0 12

0 13 D Brain-damaged 0 13 13

12 13 25 E 12 13 25

kappa= 1.00 kappa = 1.00
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Table 6

Alternative Results of Two Diagnosticians' Classification of 100 Persons into One

of Four Categories

A B

Judge 1

C D E

A 25 0 0 0 25

Judge 2 B 0 0 25 0 25

C 0 25 0 0 25

D 0 0 0 25 25

E 25 25 25 25 100

kappa(df = 9) =
0 E 50-25

= .333N E 1N-25
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Table 7

Breakdown of the 9 df Omnibus Table of Counts of Table 6 into Six Specific

(Focused) Re liabilities of df =1 Each

A B E A C E

A 25 0 25 A 25 0 25
B 0 0 0 C 0 0 0

E 25 0 25 E 25 0 25

kappa = .00 kappa = .00

A D E B C E

A 25 0 25 B 0 25 25
D 0 25 25 C 25 0 25

E 25 25 50 E 25 25 50

kappa = 1.00 kappa = -1.00

B D E C D E

B 0 0 0 C 0 0 0

D 0 25 25 D 0 25 25

E 0 25 25 E 0 25 25

kappa = .00 kappa = .00
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Table 8

Three Examples of Four Effect Size Estimates

Control

Treatment

E

Die Live E

A + B

C + D

1 2 3 4

Relative

Risk

(;,-B/c-c:0)

Odds

Ratio

(.'ii/D)

Risk

Difference

A+.6.

ra

A B

C D (A c+CD)

A+C B+D
Study I

Die Live

Control 10 990 1,000 10.00 10.09 .01 .06

Treatment 1 999 1,000

E 11 1,989 2,000

Study II

Die Live

Control 10 10 20 10.00 19.00 .45 .50

Treatment 1 19 20

E 11 29 40

Study I l

Die Live E

Control 10 0 10 10.00 00 .90 .90

Treatment 1 9 10

E 11 9 20

a (AD BC)
11(A +13)(C+ +C)(B+D)
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Table 9

Standardized Outcomes of Table 8

1
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3

Die Live Standardized Standardized Standardized Risk

Relative Risk Odds Ratio Difference (r)

Control A + C (A/C) (A/C)2 (A-C) /1 00

Treatment C A A + C

E A+C A+C N

Study I

Die Live

Control

Treatment

E

53 47 100

100

200

1.13 1.27 .06

47 53

100 100

Study II

Die Live

100

100

200

3.00 9.00 .50Control

Treatment

E

75 25

25 75

100 100

Study III

Die Live

100

100

200

19.00 361.00 .90Control

Treatment

E

95 5

5 95

100 100
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Table 10

Correlations Between a New Measure of Interpersonal Skill and Four Other Measues

(N=15)

A

B

C

D

Other Measures New

Measure (Y)

Verbal IQ

(A)

Nonverbal

Decoding (B)

Agreeableness (C)

Verbal IQ

Nonverbal Decoding

Agreeableness

Conscientiousness

.63

.53

.54

-.03

.38

.36

-.19

.38

.12 .60

Note: Contrast weights for Measures A, B, C, D are +1, +1, +1, -3,

respectively, based on predicted correlations with the new measure of

+.50, +.50, +.50, +.10.
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Table 11

Results of Eight Studies Showing N, p, r and rsampieequivalent,

Study Results N One-tailed
exact p

requivalent rsample

Survive Die

1 Treatment 1 0 2 .50 .00 1.00

Control 0 1

Survive Die

2 Treatment 2 0 3 .33 .50 1.00

Control 0 1

Survive Die

3 Treatment 2 0 4 .17 .67 1.00

Control 0 2

Survive Die

4 Treatment 3 0 5 .10 .69 1.00

Control 0 2

Survive Die

Treatment 3 0 6 .050 .73 1.00

Control 0 3

Survive Die

6 Treatment 5 0 10 .0040 .78 1.00

Control 0 5

Survive Die

Treatment 10 0 20 .0000054 .82 1.00

Control 0 10

Survive Die

8 Treatment 20 0 40 7.25/1012 .84 1.00

Control 0 20
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